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ON THE ROOTS OF MATRICES.

By W. H. METZLER.

INTRODUCTION.

In his memoir on Matrices (Phil. Trans. 1858) Prof. Cayley enunciated the
theorem: ‘ The determinant, having for its matrix a given matrix less the same
matrix considered as a single quantity involving the matrix unity, is equal to
zero.” The equation implied in this theorem is known as Cayley’s “identical
equation.” Subsequently (in the Mess. Math. Vol. XIII, p. 139), Mr. A. R.
Forsyth gave a proof of this identical equation for matrices of the third order,
based upon the solution of a system of linear difference equations.* Forsyth’s
method is applicable to matrices of any order. Considerable simplicity is gained,
however, by the employment of non-=scalar equations instead of the scalar equa-
tions employed by Forsyth.

I have employed this modification of Forsyth’s method to prove Sylvester’s
law of latency and Sylvester’s theorem. In addition I have by this method
investigated the existence of roots of matrices for different indices and in
particular the roots of nilpotent matrices. _

For valuable suggestions in the working of this paper I am indebted to
Dr. Henry Taber.

*8ylvester stated (in the Johns Hopkins Univ. Circ. No. 28, 1884) that a proof of the identical
equation could be obtained by the method of linear difference equations.



2 MErzLER: On the Roots of Matrices.

§1.—REPRESENTATION OF A MATRIX.

In obtaining the representation of matrices by the method of difference
equations, I shall make two general divisions: I, in which all latent roots are
different from zero, and II, in which some latent roots are zero.

I. Latent roots & 0.—When the latent roots are different from zero, it will
be found convenient to distinguish between two cases (a), in which all the latent
roots are distinct, and (b), in which there are groups or sets of equal latent roots.

" (a). All latent roots distinct.
1. The method readily presents itself on considering a few examples, as
follows :
1).— Matrix of order 2.
Suppose ¢ = iq)u ¢12], where ¢, ¢y5, etc., represent the constituents in the

Par Pas
positions indicated by their suffices.

Define integer powers of ¢ by ¢"+!'=¢ . ¢"; and let
"= i (@™ (9" I’ .

(C 9™
We have then
(¢“+l)n (‘P"'H)m) = ]‘Pu ‘Plzr (‘P")u (‘P")lz)-
(C ™ (¢"+‘)”| Pn P l(¢”)n (‘P”)nl

Expanding the right-hand member we get the equations

(@D =u(®"n + (@),
@ a1 = P0(®" 1 + Pes(9"a1s

etc., etc.

The left-hand member of the first equation is E(¢"),;, and of the second
equation is E(¢"),, where E is the enlargement symbol of finite differences.

If we multiply the first equation by ¢, and subtract from the product the
second equation multiplied by ¢,, we get

{E’— (Pu + P5)E + dupn — Puda}(9"n =0,
or (E— ¢,)(E — ¢:)($")u = 0, where g, and g, are the roots of the equation

[ Pn—2z ¢ = 0.
Pa Ps—
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The function | ¢, —= ¢y is called the latent function of ¢;* g, and

l P P —
gs are called the latent roots of ¢.

Similarly we obtain '
(B — $1)(E— 9)(@")u =0,

(E—g)E—g)@)-=0, [}=1 2
The solution of this difference equation is
(9")re = 4ngl + Brgi,
where A, and B,, are constants determined by giving n successively the values 0
and 1.
o (VDat=4n+ B,
P = Apgh + Bgs;

and generally

(1), 1‘ Il (1)n Il 1
“4n= |9n i Ba= 161 ¢ |and A=|g g].
A : A

We may write instead of the above equation,

1 1
¢ = Ayg, + B,gs, where 4= |¢ g
A

Il 1

and By= |g; ¢|;
A

(i. e., we may substitute for the scalar difference equations non-scalar ones),

since Pt = (|91'(9: — Pu) + 73 (Pu— g1 gi(— @) + 9301 !
A A A

91— Pa1) + 93Pu g1(gs — Pr2) + g1 Pes — 1)
A A

=96 —9) 5@ —g)
A A

= A9} + Bygp, which is the solution of (E — g,)(E — ¢;)9" = 0.
Similarly it may be shown for matrices of any order.

*In general of ¢ = ( ¢1:13...... i), then |9, —2 ¢1a..00ue $ro is the latent function of ¢.
?n¢n ...... ’g.. l ?n 0.,.—3. ¢'“
¢.| ........ ’-‘a ¢n1 .............. ?‘“-x

t.=1{y " Es
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2).—Matrix of order 3.

Suppose ¢ = { Py P13 P1s ) and ¢* = ($™)u (®")s (9™)1s |-
Pa1 Pus Pus (™) (9™ (@)
Ps1 Pz Ps (@™ )n (9")s (9"

Proceeding as in the previous case and forming the difference equation, we get
(B — ¢1)(E — g:)(E — g5)9" = 0, where g,, g5, gy are the latent roots of ¢.
The solution of this is

¢" = Ayt + Bt + Cugt,
111 |11 1!

‘Pgn.gs‘ 59 gs;
and 4,= (9’ g1 g3, By=|g19'g
A A

111 111
N 9P 919 9s
q=¢¢¢L a=|gggl

A

3).— Matrix of order w.

Suppose ¢ has as latent roots g,, gy, g5, - - - - gu.

Forming the difference equation we get

(E—g)(E—g):-..(E—g.)9"=0,
the solution of which is
P"=Agi + Bygp + . ... + Wgl.

Giving n successively the o different values 0,1,...., 0 —1, we get @
equations linear in 4,, B,, etc., which are sufficient to determine 4,, B,, etc., as
follows :

1 1....1
? g,g_
A,=|¢*— gz—'...g=—" |, and similarly, for B,, C,, ete.,
A
1 1....1
gl g’....g.,
a=|: ... )

P iy g~
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2. Powers of ¢.—The matrix all of whose constituents are zero except
those along the principal diagonal, which are units, is called the matrix unity
and is generally denoted by 1.

If from the array of constituents representing a matrix ¢ we form another
matrix & by replacing each constituent of the first array by the logarithmic
differential derivative with respect to that constituent of the determinant of the
array, then the product of ¢ and the transverse of ® in either order is the matrix
unity.

The transverse of &, written 5, is denoted by ¢! and is termed the
reciprocal of ¢.

From this definition of the reciprocal, which is as given by Sylvester (Am.
Jour., Vol. V1), we see that a matrix has no reciprocal when any of its latent
roots are zero.

We may observe that the expressions for 4,, B,, etc., as given in the pre-
ceding examples, are functions of ¢ containing the (@ — 1)*® and lower powers;
and consequently we have a formula for expressing all other powers of ¢ in
terms of these.

3. A, B,, etc., are idempotent and mutually nilfactorial.—The formula for
" gives
*=Agr+Bygs + .... + Wys,
_@—g)@—g) (0= 0) e, @GP (P—G)
= G g—g) - G—9 " (= 1) G—s)- - - (g9 +

+ (q’ —gl)(¢—g2) te s (¢ _ g«:—x)
(go— 91)(gu—92) - - + + (g Gu—s)

: _(p—g)P—g) .- (P—g.)
since 4, = (h— 91— gs) - - - - (1—gu)’

B=@—9)@—g)- ... (@—g.)
T —a)g—9s) - - - - (95— 9.)

Writing a scalar symbol x for ¢ in the above formula we have

g +

G

, ete.

—(E—g)(x—gs) ... .(x—g.) (z—g)(x—gs) -- - (x—g.)
= Gh— ) 9r—9gs)- - - - (gl—gu)g; + (95— 9:1)(gs—9s) - - - - (93— g..)

an equation in x of the degree w, whose roots are g¢,, g, .... g., as is evident

gs +ete....,
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on substituting g, for z, g; for z, etc., in the equation. The equation may then
be written as follows:

(x—g)(®—gs) -... (x— g.)=0, or replacing « by ¢ we have
P—n)@—9) ... (p—g.)=0.
Again the formula for ¢” gives
1=4,+By+.... +W,;
4, = 43,
BO = -Bg) etc-)
since 4,B,, 4,0, etc., contain all the factors of the above equation and there-
fore vanish.

This proves that the letters 4,, By, etc., are idempotent and mutually nil-
factorial.

4. Rational function of $.—Having obtained expressions for powers of ¢,
we come naturally to the consideration of a rational integral function of ¢ of an
order not less than o, which may be written as follows:

ga@"z ga,\[Aogi‘ +Bgp+ ... + W],

or Fp= A Fg,+ B, Fg,+ .... + W [Fyg,.

We saw that a matrix ¢ had a reciprocal provided none of its latent roots
were zero, and, since a rational integral function of a matrix is a matrix, the
rational integral function F will have a reciprocal (Fp)~! provided none of its
latent roots are zero.

The reciprocal of F¢ would be written

(Fp) ' = Af(Fq) "' + By(Fgs) ' + . .. . + Wy(Fg.)™";
because Fp.(Fp) = A4A,+ B,+....+W,

=1.
We may write then a rational function of ¢ as follows:
ﬂ’z A Fig, + ByFyge+ ... . + WoFyg.
Fip~ AFg + BFg + - + Wolig.’
where Fip and Fip are rational integral functions of ¢ and where none of the
latent roots of F;p are zero. This function may be written

So=
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f¢ AO Fgl + -Boﬁ;gg + + W:)%)

or fo = A,f9, + Bofg, ceee +Wosfy..

6. Identical equation.—The formula for ¢" gives
o*=Aygy + Bygs + .... + Wy,

and, as we have already observed, 4,, B,, etc., are functions of the first (0 —1)
powers of ¢ and unity, and consequently the above is an equation between the
first  powers of ¢ and unity. No other equation of this or lower order will be
satisfied by ¢, since 4,, B,, etc., are linearly independent and therefore this is
Cayley’s *identical equation.”

The A4,, B,, etc., may readily be shown to be linearly 1ndependent for if
they are not, suppose the relation

agdo+ 0By + .... +wyW,= 0, where ay, b,....w
are scalar constants. Multiplying this by 4, we get
a,d,=0,
since 4, is idempotent and nilfactorial with respect to.all the other letters B,,
. Gy, etc., as shown in Art. 3; therefore ¢, =0.
Similarly we may show that b= ¢, =.... = w,= 0 and there is therefore

no linear relation between these letters.
Again we have

¢=Ag + Bgy + .... + Wg.,
P— g =Bygs— ) +C(gs— )+ ---. +Wy(9.—g0),
P—g:=Af(1—9) + Colgs—ga) + - ... + Wy(g. — 92),

4’;90 = Ao(gl _g-) +B0(g’— gn) +.... +Vo(g~—1—'g-)°

Then since 4,, B,, etc., are mutually nilfactorial we have

(¢—gl)(¢—93) e (¢_g~)= 0,
which is the identical equation in product form. Here again it is obvious that
¢ satisfies no other equation of this or lower order, since the letters 4,, B,, etc.,
are linearly independent.
Hereafter when I use the term *‘the letters ” without further specification, I
shall mean the 4’s, B’s, etc.
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6. Sylvester's Formula.—The rational function of Art. 4, when written in the
form Jo=AJg+ Byfg: + . ... + Wofg.,
is obviously Sylvester’s formula for the particular case of a rational function,

since the expression for 4, is (@—0:)(@—g) ---- (2—9.) 41q similarly for
(r— g2l —gs) -+ - - (11— 9u)
the other letters.

We have then, thus far, a means of reducing a rational function of ¢ to a
rational integral function containing only the first @ powers of ¢, beginning with
P=1.

(b). Sets of equal roots.

7. Let us for convenience take the three examples that we considered in (a),
where now we suppose some of the roots to become equal.

1). Matriz of order 2.—Suppose in this case g, = gs, then proceeding as in
Art. 1, we find for the difference equation

(E—gq)'9" =0,
¢n frd (Ao + nAl) gf.

the solution of which is

If n=0, then 1 = 4,,
“n=1, “ ¢=(4,+4)g;
A1=¢Zg‘, and A=g,.

2). Matrix of order 3.—In example 2) of Art. 1, put gs = ¢,, then the differ-

ence equation becomes
(B — 9:)(E — 95) 9" = 0.

" = (4, +nd)) g1 + Bugy".

The expressions for the A’s and B, may be found as before.

3). Matrix of order o.—Suppose we have a matrix of order o having aslatent
roots ¢y, g5.-.. gr, g, of multiplicities p,, p;.... p,, p,, respectively. The
difference equation then becomes

(B—g)"(E—g5)P... (E—g,)"d"=0;

"= (4o+nd,+n4,+.... + 0774, ))gt + (By+nB +....
+227'B, g+ ... .+ (S +nS+... 402718, ) gr

p—1 py—1 Pe—1

=g;'En*AA+ gz EnAB)«"l" cees g Eﬂ‘&-
0 0 0

The solution of this is
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The expressions for the A’s, B’s, etc., are obtained as before by giving n, o
different values, when we get o linear equations for their determination. We

shall find that

A=

1 0 0 eeeal ... 1 0 cae e 0
) [/ 9 gz - gs Ge seee 9.
g 297 49 .0 - g 2g7 R S
A 3q1 9g1 g g 348 R L

The factors of A may be found without serious difficulty. They are as
follows :

A=P.T g T (95 — 9,)%5%r ,
a=1 =1 y=1
where 32y,
P=(p—1!(p—2)!....21(s—1)!....(p,—1)!.... 2],
and pl=(p.—1)+@P.—2)+....+2+1

2
Let us for convenience use A (z’) to denote the determinant formed from

A by substituting for its u* column the column | 1 ; also let Zp, denote
¢
;«—l

p+ps+ . ... + p., where A has any of the values 1, 2....7. Then

¢ 4
A(A1)=A°,A—£1—Z—I)=Bo» etc.
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We get pme
=, T (@—g
N=p. 0 gri. =t~ _
a() =P8, o =g
=& d==g e=p
XE, _1(9—a1) .71'12B (g — g, @02 =D, anz l'I’ (g, —g.) P87,
= =2 =
............ ; =.

A » = L
(EPA+ 1)— et I CEr N e

F kv R P e P
X mﬂ—l(‘?’—gaﬂ)-YI;II(QAH—.%) awim D@D T TT (g5 — g.) 7%,

=1 e=1

where (A +1)2d2e2 (A + 1) 2y, and where A has any of the series of values
mentioned before.

The factor F,‘f ? (¢ — gr+1) 18 a function of (¢ — g, +,) of the order (p,4,—1),

. * A+1

which does not contain as a factor ¢ less either of its latent roots, and is in
general different for each of the letters. This formula gives the expression for
the numerators of all letters with the subscript zero, and for the numerators of
the letters with subscripts other than zero we have

a=8 p=8
? . + 1 gfi_ gnl (P — go) e o
— DP+Y e= . _B= . Wia
A (EP:\"' v+ 1) = P® . gi’:,?l‘_r (q’ — g)‘+l)p)\+1—v p:-q-: (q’ 9A+l)

y=8 =8

x II (g‘\_*_l__gy)(p,\_'_l—l)p’. 1 (gs_g.)pap.’
y=1 =]

where v has any of the series of values 1, 2, .... p,,; — 1, and where
yZ(A+1)202ez2(Aa+1).

The numerical factor remains the same for all the letters with subscript zero, but
varies for the others.
Introducing now the denominator A on both sides we get

B=s f=s
4,= pl—=12(4’ — )% Fp s (@ —91) +Bl=13(91 — gp) PP,
: .. . p.=.‘ ........................... R
A= P9, 31—:1’(‘3’ —ga). (p—g) - FQ __1(p—g) 90! pl;ll(gl—ga)p’ .P;

and similarly for the other letters.
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8. Powers of ¢.—The difference equation gives an expression for ¢* and
(since the latent roots of ¢ are different from zero) » may have any integral
value positive, negative, or zero; and here again the A4’s, B’s, etc., are functions
of ¢ containing the (o — 1)® and lower powers, so that we have a formula for
expressing in terms of these all other powers of ¢.

9. Rational function of ¢ —Here as in Art. 4 we may obtain any rational

integral function of ¢, and hence any rational function of ¢, viz. fp= %,
)

provided none of the latent roots of F,¢ are zero.

It may be written as follows:
P1— Pa—1

f<p.= ia,@“ = Ea‘, [g‘l‘ EX[LAAA + g5 E(t‘BA + .. .4 Elu"&].
0 0 0 0 4 0

10. Vacuity and Nullity—The determinant of the array of constituents
forming the matrix is called the content of the matrix, and is denoted by |¢]|.
If the latent function of ¢ be written in the form’

T — Mm@ P m_gx* ... EmEFEM =0,

then it is obvious that m is the content of ¢ ; m; is the sum of all the principal
first minors of |¢|, and generally m, is the sum of all the principal »*® minors of
|®]. If m=o0,the matrix ¢ evidently has one latent root zero and is termed
vacuous. If m = 0, and m; £ 0, then ¢ has but one latent root zero, and is then
said to be simply vacuous or to have the vacuity one. More generally, if all the
m’s from m to m,_, are zero, and m, § 0, then ¢ has x latent roots zero, and is
said to have the vacuity x. If |¢| 3= 0, ¢ has no latent root zero, and is then
non-vacuous.

If all the (x — 1)* minors of the content of a matrix vanish, but not all the
»** minors, the matrix is said to have a nullity x. The nullity may be equal to
or less than the vacuity, but never can exceed it.

11. Identical equation.—If ¢, g¢,, ... . g, of multiplicities p,, p;, .... p, re-
spectively are the latent roots of ¢, then the latent function of ¢ may be written

F)y=(z—g)"(x—g)* ... (x—g,)"
=ax*t+a,_x'+.... +ax+a=0,

where ® is the order of the matrix.

Shm e o

Y. o+ mmw
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Then F(p)=adp*"+a,_9" '+ .... +ap+a
. =Ao(a,,g';+a._,gi'" + .o+ a)
+ A(0agr+0—1.a, i1+ .... + ag)
3

+ Ay(@*a gt +0— l.a,_,g;~ 4 ... . + ag)) + ete.
+ Bya.gs +au_1@ '+ .. .t aigy +ay)

+ Boags +0—l.ay 103 ' +. . . . + aigs)

-+ ete., ete.

d [}
= A Fg, + A(g,% Fgo+.... + A‘(g’EE)Fgl +....

BG4 e eiiienrinnnnn. + B,(g,a—) Fy, +
+ ete., ete.

But Fg=Fg,=F'gy=.... =F»~V, =0,
Fpp=Fgy=.......... .= F®"Yg, =0,
etc., ete.

F@)=(p—g)"@— ). ... (p—g.)+=0. -

In general ¢ does not satisfy an equation of lower order than the one above,
in which case it is the identical equation.

When ¢ does satisfy an equation of lower order the identical equation is
said to degrade. 1t is evident that ¢ satisfies but one equation of lowest order.

We have yet to prove, however, that ¢ less either of its latent roots must be
contained among the factors of this equation of lowest order. We proceed in
the first place to prove certain properties of the A’s, B’s, etc., which we require.

Having the above equation and knowing the factors of the A’s, B’s, etc., we
gee that the letters of one set are nilfactorial with respect to the letters of any
other set, and that all the letters except those with subscript zero are nilpotent.

We have
1=A4,+By+....4+5;
A,= A}, B,= B}, etc. (multiplying by 4,, B,, etc.);

also A, = A A, = A A, A, = A 4; = A, 4,, etc.,
B, = B,B, = B,B,, etc.,
etc., ete.

Therefore the letters with the subscript zero are idempotent and also idemfac-
torial with respect to all the letters of the same set.
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Some of the letters with subscri;;ts other than zero may vanish. If 4,=0,
then all the A4’s with higher subscript vanish, for 4, contains the factors
P—go)* (P —go)”. ... (P — go)"(p — g1)° besides a homogeneous rational
integral function of ¢ and its latent roots, which is non-vacuous as mentioned
in Art. 7, and therefore does not affect the vanishing of A,; consequently
P—g)....(d— g)P(P—g)"=0. But this is a factor of all the 4’s with
higher subscripts, they then also vanish.

The A’s, B’s, etc., are linearly independent. To prove this it is sufficient to

show that the A’s are linearly independent, for assuming a linear relation .

between all the letters we have but to multiply it by 4, to get rid of all the
other letters, leaving a linear relation between the A’s.
Suppose 4,, . 1, Bp,—ey—1- - . - Sp,—.—1 8re the letters with the highest
suffices which do not vanish, and suppose the relation
ady + a4y +ady+ ... a4, ., _1=0.
Multiply by (¢ — g1)™";
apdo(p — g1)P "1 =0, but Ay(p —g)) =" % 0;
a,=0.
Similarly all the other coefficients may be shown to be zero and therefore
no linear relation exists between the A’s or any of the letters.
Now suppose
Fg=ag"+bg—'4+....lg4+m
to be a rational integral function of g, of order x equal to the order of the lowest
equation which ¢ satisfies. Then
Fp=ap-+b¢p'+.... +lp+m
= Ayagi + bg5~'+. ... +1g, + m)
+ Ay(xagi 4+ x—1bgi~* + . . .. +1g)
+ Ay(FPag; + x—1%g; 1 + . . . . + Ig)) + ete.
+ Byags + b5+ . .. . +lgs + m)
-+ By(xag; + x— 1bg;~* + . . . . +1g,) + ete., ete.
= AFg, + 91 AiF'g, + 91 4y(F'g, + 9. F"q1) + 91 45(F'g, + 39.F"g, + giF""g,)
+ 9. 4(F'g, + 9. F"'g, + 601 F"'g, + giF""g,)
+ 91 4s(F'gy + 15, F"'gy + 2691 F""gy + 10g3F"" g, 4 giF"""'g,)
+ ete.

+ B\Fg; + 9:B:F'g; + 9, Bo(F'gy + 9,F"'g,) + ete.
ete., ete.

at ons iy e Ve AVAANOT’. EEN NSNS et el R —— . _
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= A,Fq, + A, Flgy 4+ ....+ A‘(“"Zi%) Fg, 4. ...

d
+ B, Fg, + 9. B F'gs + . . . . + Bj(gga———) Fg+....
Js
+ etc., ete.

Since the A’s, B’s, etc., are linearly independent, the necessary and suffi-
cient condition that F¢ = 0 is

Fg,=0, Flg;=0,.... Fm—a—Dg =0,
Fg!=0’ F’yg= O, P Fp’_“'_ng’= 0;
Fg=0, Fig,=0 .... Fn=s=g,=0.

These results show that the roots of Fg=0 are g, g,. . . . g,, of multiplicities
P—ay, Py—ay, . . . - Py—a, respectively, and consequently

Fp=(p—g)" (Pp—9g)" - ... (p—g)" ", (to a scalar factor),
where ¢ less each of its latent roots occurs as a factor.

I1I. Some latent roots zero.—We now come to the case where some of the

latent roots of ¢ are zero.
12. As before, let us consider a few examples and observe the form of the
difference equation and its solution.

1). Matrix of order 2.
Latent roots gy, 0.
We obtain the difference equation
E(E— g,)9" = 0, which gives as solution
P = 4,91, forn31;
" =g .
This is the same value of ¢* as would have been obtained by putting g, =0 in
the expression for ¢, in example 1), of Art. 1.

2). Matriz of order 3.

Latent roots ¢, 0, 0.

The difference equation is
EYE—g)9p"=0;
9" = Aygt, for ns 2;
" =g "
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This again is the same expression for " as we should have obtained by putting
gs=gs; =0, in example 2) of Art. 1.

3). Madtrix of order .
Let the latent roots be g,, and 0 of multiplicity o — 1.
The difference equation is

B~ E—g)¢" = 0;

Pt = Ay, fornJo—1;

¢n — ¢ —lgil—n-l-l_
This also is the same expression as we should have obtained by putting
B=g=....=g,=0, in example 3), of Art. 1.

4). Matrix of order o.

Take the most general case, where the latent roots are ¢;, ¢;....9¢,, 0, of
multiplicities p,, p,, . . . . p,, respectively, and where p, +p,+ .. .. + p, =o.

The difference equation is found to be

(E—gl)Px(E—— gB)Pﬂ .« e s . (E——gr)prEp.¢n = 0.
For n<p, the solution of this is

Pp—1 Pa—1 pr—1
"= g{‘En"AA + g3 En"BA +....4g° E‘n“RM
0 0 0
It is obvious that it makes no difference what values we give to =, in the
solution of the difference equation, to obtain expressions for the 4’s, B’s, etc., as
long as we take any o different values which » may have; so that in this case we
get for A the following :

gt pgt .9 g (4
A=|g0t(p, +1)gPtt .. gkt gt (p, 1) g

.........
o o e
.........

G e—1) g™ g g (e—1igt
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If we examine the equations from which the 4’s, B’s, etc., are determined,
we shall easily see that the 4’s, B’s, etc., of this case are what the A4’s, B’s, etc.,
of example 3), Art. 7, become, when g, is put equal to zero; and consequently
the expression for " found here is what that found in example 3), Art. 7,
reduces to when g, = 0.

For n < p,, the solution of the difference equation is

7—1 Pr—1

¢"=ng1}*¢4,‘ ... +g?zn‘RA + N,
0 0

where N, is some expression resulting from the solution of EP¢"= 0, and may
be determined in the same way as the expressions for the 4’s, B's, etc. When
n3p,, No=0. '

If the expression for N, be determined, as just mentioned, it will be found

Pe—1
to be what the term g7 Emn"S,\ reduces to when g,=0. This term does not
0

vanish when g, becomes zero, as might appear.

We have 9?8 =0, when n51and g,=0;
and #e8=0, “ n3sp, Y 9,=0;
as may easily be seen from their factors given in Art. 7.
That N, is what this term reduces to when g, = 0, is also apparent from the
fact that the solution of

(BE—g)"(BE—g)™. ... (B—g)"Er9"=0

is the same as what would result from putting g, = 0 in the solution of
(B—g)(E—gs). . . . (B— g, )"(E—g.)"9" = 0.

We arrive at the conclusion, therefore, that the formula for ™ when none of its

latent roots are zero, still applies when some of them become zero.

13. Expression for unity.—In the cases where none of the latent roots were
zero we could put n = 0 in the solution of the difference equation and obtain an
expression for unity, but when ¢ is vacuous we cannot do so. In the general
case when none of the latent roots are zero we have

1=4y+ By +Co+....+ &,
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which is an identity ; that is, if developed according to powers of ¢, the coeffi-
cient of each power of ¢ (which is a function of the latent roots) would be iden-
tically zero. This property of the coefficients still subsists however small any of
the latent roots become, and consequently is still true when one of them becomes
zero. Suppose g, =0, and denote by 4;, B . ... S, what 4,, B, .... S, become.
We have then

1=Aj+ B+ . ...+ S,

which is an expression for unity when some of the latent roots are zero.

14. Powers of .—The difference equation gives us an expression for ¢ ;
but ¢, being vacuous, has no reciprocal and therefore n can have only positive
values. This formula for ¢" gives a means of expressing the o™ and higher
powers of ¢ as rational integral functions of the (@ —1)* and lower powers.

15. Rational integral function of ¢.—Having an expression for any positive
integral power of ¢, we can write any rational integral function of an order not
less than o as follows:

znZa,@“: ia,,[g‘;mzzlﬂ‘ai;\ +....+ gfp’EZIFARA +Nu~]‘
0 [] 0 0

16. Identical Equation.—We have
¢" = (do+ 04, +etc.)g7 + (By + 0B, + ete.)gs + . . . . + (B4 0B, + ete)gr;
and it has been observed that the A’s, B’s, etc., here are what those of Art. 11
reduce to when g, = 0. This expression for ¢* is therefore what the expression
of that article reduces to when g, = 0, and therefore it may be written

P— 9P (Pp—g)-...(p—g )" =0,

which is the identical equation unless ¢ satisfies an equation of lower order.

Having this equation, the factors of the various letters show that (1) the
letters with subscripts other than zero are nilpotent and (2) the letters of any
one set are nilfactorial with respect to the letters of any other set. From the
expression for unity, as given in Art. 13, it may be shown in the same manner
as in Art. 11, that the letters with subscript zero are idempotent and also idem-
factorial with respect to all the other letters of the same set.

Each one of the sum of &'s of which N, is composed contains all the factors
of the identical equation, and consequently ¥, is nilpotent.
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It may easily be shown that all the letters, including N,, are linearly inde-
pendent ; and we have therefore sufficient data for showing in precisely the same
manner as it was shown in Art. 11, that ¢ less each of its latent roots must
appear as a factor in the identical equation; and also that ¢ satisfies no other
equation of the same order. The identical equation may then be written

@—g (@ =g .. (P — g PP =0.

§2.—PRroPERTIES OF THE A’S, B’s, ETC.

17. We have already proven that:

(1). The letters with the subscript zero are idempotent and idemfactorial
with respect to all the other letters of the same set ;

(2). The letters of any one set are nilfactorial with respect to the letters of
any other set; and

(8). The letters with subscripts other than zero are nilpotent;
and we shall now establish a relation between the letters of any set.

18. Relation between the A’s.—All the letters of any set, with subscripts
greater than unity, can be expressed as powers of the letter with subscript unity

according to the following law :
Li=2a! L,.

This relation may be established in two different ways as follows :
First Method.
We may write

Ap=A[@—q) + 5]
= 4y[4o(P — 1) + 1]

— A(¢—91)
= Angl[._”_gl_l‘ + 1]
= A, [N +1],
where N is put for Ai@’g_——g—’)
1
Let us denote by log (& + 1) the series

N2 N2 N*

.N—'—-2—'+—3—'——4—+....+(—'1

which is finite, since the p$t and all higher powers of N vanish.
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If we develop €8 ¥+D — g¥—T+5 —oto. g000rding to ascending powers of &,
we shall find that the coefficient of N is unity, that the coefficients of the 2*® and
of all higher powers as far as we choose to go vanish, and we know that all terms
containing the pi* and higher powers vanish, because N?: contains the identical
equation as a factor. .

We may therefore write

14 N=¢osa+m,
Ap = Agdos 1+
= Ayg,¢*,
where A is put for log (1 + N).
A" = Aygrer4;
A" = Agi(1 +nd + %‘i’ + "i;‘%? + ete.)

2 42 8 48
= g;-(Ao+nA+”_§A; +”3_‘:~+etc.),

A, being idemfactorial with respect to the 4"s.
The expression already found for ¢* is

" = (4o + nA; + n*A, + etc.)gp + (B, + nB, + ete.)g? + etc.;
A = (4, + nd, + n*4; + ete.)g?.

These two expressions must be identical ;
-1 — n*A4* (nd)r—?
Ao+nAl+etc.+nP1 API_1=Ao+nA+ 3 +....+(p_1)'.
l -

It is obvious that A7 =0, since N»»=0;
A? A® At
(A—A,)+n(-ﬂ——A, + (m—A,) +n’(4—! __A.) + ete.

Apx—l _
T A =0
In any case this is true for all positive integral values of n, and therefore the
coefficients of the various powers of » must be identically zero. We have then

+

A= A, and generally 4*=2! A,.

Having all the A4’s expressed in terms of A, we can find the relations
between them; and in an exactly similar manner the same relation may be
found to exist between B’s, C’s, etc.
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This proof of the relation is due to Dr. Henry Taber. I have found a proof
of it based on the fact that

(4o + 4, + ete.) = 4, + 24, + A*4, + etc.,
which is somewhat long and complicated but not without some interest. It is
as follows:

Second method.

For convenience suppose we have a matrix ¢ of order @ whose latent roots
are g,, 9; - . - - g, oceurring py+1, py+1,.... p,+1 times respectively. Write
]
ag for 22 — 2,

;.3 “ 38 —-3—3(28—2),
4 4.3
a, 4‘—4——2—“{34—-3—3(24—2)}—4{2‘—2},

n ‘“ ” y 2 ! n j 2 ! n P ! ) 21

ap! Pl __pl— _3 !3!a2—etc ..... - _"‘k !k!a‘_-..._ -—-l !a,,‘_l,
\ (7n—3) (p—k) (pm—1)

where ¢, = 2* — 2,

a
a; = 3*—3 — 3(2"— 2), etc,, etc.;
also write
Tfor Ay + A4, + ....+ Ap,.
It is readily seen that
2
as= 2 — 2,
8
ay = (33—3) — 3(23— 2),

a=(4— ) — a3 —3) + L2 (@ —9),

6.4.
3(25_ 2),

ay= (5°— 5) — 5(4"— 4) + 2 (38— 3) — 25=

a=(p' —p)—p(p—T —p—1) +.... + (—1)‘(17__%!)—!—,;! (p—% —p—7).-..
e (1) P_——(P;l) (22— 9),

where the subscript of p has been dropped for convenience, since no confusion
can thereby arise.
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Separating the value of &; into two parts we get

S
!

—P +P(p’—'1) +.... _(_1)‘ (p_xp_l)'k'—-—-(—l)”p(p—l)
=p!+ p(1—1)"1
=p!,

We know that
¢;,.=0 for x < n,
;,.='n!,

a1

a,=4in(n 4 1)!,

a={"TF+ flav o,

”;:=[(z-:1)!+n(n_l)§ ot AT +°t°'}

5 |G F9! | aral
—)(n—2) 1 3
+ = ){(a.+3)4.+(z—1)!(21)"".8““}
! 1 x+1
+““+(x+1)!gz—x—1){(z+k+1)!+ @1y (z—x+1)!+et°‘}

+ etc.] (n+2)!

= coefficient of "+ * in the expansion of (¢ —1)* =(¥ + _2‘”1' + % + ... )”,
multiplied by (» 4 ) !.
Having obtained the foregoing auxiliary theorems we may proceed to the

more direct consideration of the relation between the letters.
Taking the various powers of 7'up to the p** we get

1). T=A 4+ 44+ ....+ 4,
T+ 2T=24,+ P4, + .... + 2*4,,

2). T'= 21 dy+ Gpdy + .. .. + A, =341 + 954,4,,
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3). T'=31 Ay + asds+ ... + apd, =S A+ 3TAMA, + 654,4,4,,
. n4-1 p

n), T"=n!d,+a,4p 1+ .... + a4, =S A} + nIS A} 14, + etc.,

p). TP=p! 4, = 4.

From these equations we easily get, on multiplying by proper powers of
the various 4’s,

A= (p—=x)4i4,_. =x!(p—=x)! 4, .4,
A Ay = (p—ur)! 4, 4%,
ete.
A=) (e ) () (p—2d —2p— . o —agr) VAT A -

In this way we get all relations between expressions of weight p.
From equation p — 1) we get
A7+ (P4 =(p—1)! 4,1+ i (p—1)p! 4,.
But Af 74, =4{p! 4,;
M= (p—1)! 4,_;.

Similarly, as in case of weight p, all relations between expressions of weight
(p —1) can be found.
A7, =(p—2A) 4, ,4,_,,

ete. ete.
A=) () () (p—af — . —1) AL A

From equation p — 2) we get

£+ (p—2) 434y + 4) + P=DP=3) g0z

p—2 —2)(p—3
=(p—2 14, 2+ Ho—D(p—1)1 4, +{E5 2+ B =1 4,
A= (p—2)! 4,_,
Again, we could procee'd as before and obtain all relations between expressions
of weight (p — 2).

Suppose we have performed all the operations and found all the relations
between expressions of the same weight to A3 +'=(n 4+ 1)! 4, ,.
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Then let us consider equation n). —
A3+ &3~ (dy + Ay + ete) + MDAzt (4, + 4, + ete)? + ete

n--A
=l Ay 40+ 1) Ayyr Ao Gy r e and,.
I wish now to show that the terms of weight (» 4 A) on the one side of the
equation cancel those of the same weight on the other side, where A may have
any integral value from 1 to p —n.
Collecting the terms of weight 2z 4 2 on the left hand side of the equation we get
*
2

nAp-14, ., + "(”; Dap—2(4 ., + 24,4, + 24,4, _, + etc.)
3

_ . *
n n(n ;)'(n 2) A=Y, 5 + 3ZAZA,_, + etc)
: 3

n!
Y e EF )T —x 1)1

Replacing each of the terms in this by the proper function of A}*+* we get

A7 (Lt (e DE4IA,_ oy + ote) + ete.
k=41

n n(n—1) 1 2 2
|:(3¥+1)!+ 2 {(2.+2)!+2!a!+3!(;._.1)!"““"'} |
n(n—1) (n—2) 1 3 6
+ 3! {(}\,+3)'+(2|)a(x_1),++m+etc}
n! 1 %41
+""+(x+1)!(n—x+1)!{;\,+x+1)!+ (2!).=(1__x+1)!+etc.}

n4=A

an
(n+2)!
But A}t*=(n+2)! 4,,,.
Therefore the term of weight n 4+ A4 on the left is equal to the term of

This is at once seen to be Art?,

nt
weight » 4+ A on the right which is anAAn+ N
Ar=n! A,,

where n may have any value from 2 to p, and therefore our theorem is
established. ‘

In a similar manner the same relation may be shown to exist between the
letters B, O, etec.

Ath
*

* These terms will not appear unless is an integer.
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19. Relation between the N,—We have already observed that N, was nilpo-
tent and nilfactorial with respect to all the other letters, and, knowing the fore-
going properties of the A’s, B’s, etc., we may now find the relation between the
N, of Art. 12.
¢ =(4+ 4, +ete)g,+(By+ B, +ete)g+ .... + (R + B+ etc.)g, + N,
¢* =(4,+ 24, + ete.)g} + (B, + 2B, + ete.)gy + ... + (By+ 2R, +etc.)gr + N,

={(dy+ A +ete)p+....+ B+ R +....)9.+ N}

= (4o+ 24, + ete.)g} + (B, + 2B, + etc.)gi + . ... + (Ro+ 2R, + ete.)g: + N3;
. N,= N3}, and generally it will be found that N, = N}. :
I shall hereafter omit the subscript of .

§3.—Law or LarTency.

20. I shall consider the two cases, first where none of the latent roots are
zero, and second where some latent roots are zero.
- First case.—Suppose A B ... 8, _, are the letters with greatest

Pr—6;1 "TPpy—ay
subscripts which do not vanish. The rational function of Art. 9 may be written
as follows :

Pe—ae

Eaﬂq;“: iap[yi‘ﬁo + gf’i:#AA.\+ vt IS+ QTE#ASA]i
0 0 1 1

then, writing Ea,@" = f¢, we have
0

n py—a, Py—ay
(fo—JSg)= Z a,.[gi‘ E WA+ (g8 —g8)Bo+ g5 E @B, + ete.
1] 1 1
Ps—ae
+ (7 — )8+ g2 D 8.,
1

n Py—a, Ps—as

(o — )= Yo o[ (gt—g) Aot g5 D% W hit ... H(@ — )+ gt D2 w8,
. 0 (] 1

Pe—ae

(:f‘P_fgl) =Eau[(g’l‘_g:)‘40 +....+ Q:EFAS.\]-

In the first equation 4, in the second B,, in the third C,, etc. and in the
last S, do not appear.
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Again
fo =Sy obviously contains none of the A’s,
(f¢ _fg’)l’s—'lg “ m . « B’S,
(f¢ _fg‘)h—u “ f “ 0 S’S,
(o—Sa)" 2 (fp—Sg ) “  npeither 4’s nor B’s,

but contains all the other letters,
(fo—Sa) = (fo —Sg)»~....(f®—Sg.)"~* contains none of the letters but

8’s, and
(o —Sg )~ (fo—Jgm)="....(p—Sg )" *=0.

The above expressions of the type (/¢ —/g) and their products and powers
are evidently the expressions of lowest orders in fp that have the characters
specified viz. as to the absence of the A’s, B’s, etc.

" The latent roots of fp are fg,, f9; - . .. fg, of multiplicities at least p, —a,,
Py — Qs . ... P, — a, Tespectively.
Ifa,=a;=....=a,=0, then the latent roots of fp are fq,, fgs,.... /9,

of multiplicities p,, ps. ... p, respectively, since E P» =0, and fP has o latent
roots. !

Second Case—Suppose, as in the previous case, that 4, B, _.....R,_.,
are the letters with greatest subscripts which do not vanish and that N*~* is the
greatest power of N that does not vanish. The rational integral function of
Art. 15 may be written as follows:

Fo = za&" = i?,a“[sﬁziﬁ yi"{jﬂmx +.o g’r‘}i:y*& + N“].
0 0 1 1

Making use of the expression for unity and proceeding as before we have

n P —ay
(Fo—Fg) = I+ a,[gt DX i du+ (g5 —g) By + ote......— Sgi + N+],
. 0 1
n _ Pr—a Py—ay
(Fop—Fa)=Yr o[ (fi—gi)do+ gt D @it g5 D2 w*Bit....—Bgi+N+],
. 0 1 1
: n ~ Pr—ar
(Fo—Fyg)=Dr a[Gt—g)do + ... +‘9¢2#ARA—'5'09¢+ ],

0

n =0y Pr—ar

(Fo—F0) = r a[gtdo+ gt 31 wdi+ ... + g D2 @B+ N¥]
0 1 1
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A, disappears from the first equation,

B, “ “ second *

'.S'o H ¢ last u

(F¢ — Fg,) —= obviously contains none of the A’
(Fq)__Fg,)Pa"“a o T “ “ .B’S,
(Fti.’—FO)""“‘ “ does not contain N;

and as before,
(F¢p — Fg)»»— (Fp— Fg,)»—....(Fp—Fg,yr— (Fp — Foy—~=0.
The above expressions of the type (Fp— Fg) and their powers and products
are evidently the expressions of lowest orders in F¢ that have the characters
specified viz., as to the absence of the 4’s, B’s, etc.
The latent roots of F¢ are Fg,, Fyg,.... Fg,, FO, of multiplicities at least

P—ay, Ppy—as, . .. . p, —a, respectively. .
Ifay=ay,=....=a,= 0 then the latent roots of F¢ are Fg,, Fy,, ....Fg,, FO,

L)
of multiplicities p,, p,, ps,....p, respectively, since Eo\ pr=a, and Fp has o
latent roots. 1
§4.—NuLLITY OF THE Facrors oF THE IDENTICAL EQUATION.

21. Let the identical equation be

(P— =" @—g =" ... P—go P g = 0.
Denote all the factors of this equation except the first by 4.

Then
(p—g)—=dh=0,
N,[¢—g)" =] =0, where N,[p] denotes “‘the nullity of ¢”.
But N,[%] < 0 —p,, since vacuity of 4, is o —p;,
and N,[(p—g)" "] Z 15

N]=0—p,
and N,[(p—a)" "] =p:- '
Similarly, N,[(—g.)P»~ %] = p..

]
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Let
Y=(P—go)" .

N[hl=0—p,
or Ny[(¢—go)" " h]=0—p.
But  N,[(¢—g5)"""] =psand
N,[{s] S o—p1—ps, since the vacuity of Y, is o—p,—py ;
N,[¥e] = 0—pr—p:-

We know that

Again
N[ @—g) " (@—g) 1+
N(@—g)" 2 @—g)d]l=0;
N[(@—g) 2 (@—g) "] =n+ ps:
and generally
Nv[(‘p—gl)“—" @’—91)1”—.' vee (¢—9A)”A“’~] =pt+p+.... +p-

§6.—Roots oF A MATRIX.

Under this head I shall distinguish two cases,
I. When the latent roots are all different from zero and
II. When some latent roots are zero.

I.—Latent roots 3 0.
22. Knowing the expression for the 4’s, B’s,-etc., and the relations between

them, we may write the expression for ¢" as follows:
" = Agie™4 4 Bygien® 4. ... Sigie™.

Writing in this formula » = % we get

1 14 1B LS
¢" = Agre™ + Bygze™+ .. ..+ Sgse”-
Taking the m'® power of both sides we get
¢ = Aygie** + Bygse® + . ... + Sg™;
¢ has an m*® root.

1
23. In the formula for ¢~ we have s different m-valued functions, viz.
FY !

gi:9s»----g;, and consequently taking all possible combinations of these values
we get m* different m*® roots of ¢.

Rt e W - T W e —

———



28 METzLER: On the Roots of Matrices.

24. It may be interesting to consider a few examples to show something of
the character of the various functions F entering as factors in the 4’s, B’s, ete.
1). Matrix of order 5.
Latent roots g, of multiplicity five.
¢ = Aygie*t = (4, + nd, + n’4, 4 n*4; + n'd,)g},
A=4! 3! 2] g,

4,=1,
d=_@—9)  @—9) (@—a)f (‘P—'gl),
' 4gy* + 39, 29, + [
—11—g) @©@—g) @—g)
4= 24 gt 2g.° + 2g9¢ '
—_@—9), (¢—9)
4, = Iy + A
— (@—g)
4,= 2ags
2). Matrix of order 6.
Latent roots all equal.
q’n — Aogilend,,
A=5! 4] 3! 2! g,
AO = ls
4=0—9)0 @—g) @—9) @—9)", @—a)
BTN it T ag) T @
=_50—9) 1@e—g)_ (@—a0)f_  (@—a)f
=T T e T o
=7@0—9)’_ (—g9), @—9)
As - 24915 ! 4914 + 6918 1 ’
—_@—9) _ (@—g)
4= 1 2_(;',‘sl + 249,‘l !
—@—g)
4 6! g,l“
3). Matrix of order .
Latent roots all equal.
¢ = Aggie" 4, (w—1)
A=@—1)! (0—2)!....21 g 7,

4,=1,
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= 1)9‘”‘ =29~ T ¢

A =(— @’ 9" 4 (— )»—1(‘? g ~* + + (@ —.‘71)’

4= @—g)

4). Matrix of order 4.
Latent roots ¢, = g; = g, ¢s.

¢“ = (4, + nd, + n*4,)g? + B.gs,

= 2! g¥(g:—95)*
_(¢ 9@ —9) + (@ —91) (9 —91) + (9 — 9t
(91— gs)°
(‘P g
T (B—a)
5). Matrix of order w.
Latent roots g1 =gs =g, = . ... =p41s B =Gos2= - -+ = oo

where p +g¢=o0.

where

¢n — Aognerm, + BognenB,

a=p—2 r(p—1) qlg—1
A= H (p—a)'. H (q—ﬁ)' /NN A 2_ (g — 91)™,

4, _(<P—-gz)"{ p(¢-—yx)” T (9—g0"H(ge—0h) - - Aa(gs—g VT

(=192 —g0)* ™"

—(¢_gl)p q(‘P—yz)q "hoa(p—g0)"H(g1—gs) +- - - (g1 —ge)" ™ l},

(—1)** gy —gn) !

=1,

k= p,

r=P@+1).... (p+2—2)
@—n! ’

hl— ly

hy =g,

hzzq(q+1) (g+2r—2)
’ a—1)!

e am o

o -
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6). Matrix of order 6.
Latent roots ¢, = g, = g5, §s = s, §s-
A=2! §19:(9: — 91)°(9s — )* (91 — 95)°,
Ay =(p—5)(P—9) [(2—91)*{ 3(95—91)+2(95—9:)(9s—91)+(9:—9.)*}
+(@—91)1 2(gs— 1)+ (9s—91) } (95— 91)(9s—91) + (95— 91)* (93— 1))
(95— 9)°(gs — 90)°-

25. Negative fractional indices.—We have seen that we may write

L 1 4, 1B 18
¢" = Agre"+ Bygie + . ...+ Sgle*.
Substitute in this —m for » and we have

1 1 A 1 8,
Tw = Aog;"e",+ e+ Sog,—=e"'—'l,

L 1 4
: ]

but ¢- =Agre™ +... .+,Sgg,‘=es"'.

By definition "¢ - = 1; and multiplying the corresponding sides of these
two equations together we have

"9 "~=Ado+By+....+ 5
=1.
In the formula therefore for ¢" when no latent root is zero, n may have any
integral or fractional positive or negative value.
I1. Some latent roots zero.— Before proceeding to the case where some but not
all the latent roots are zero, I shall consider the case where all the latent roots
are zero.

26.—All latent roots zero—roots of zero.
In what follows denote the matrix

$=(0 0 1 0 0 0)by 13+ 24+ 354 46.*
000100
00001 0
0000 01
00 00 00
000 0 00

* The linear form representation of a matrix is due to Charles 8. Peirce ; and the notation employed
here is virtually his.
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The first number of each term of the sum indicating the row and the second
the column in which the constituent appears, that is, ¢ is a matrix in which
unity is the constituent in the first row and third column, unity is the con-
stituent in the second row and fourth column, unity is the constituent in the
third row and fifth column, and unity is the constituent in the fourth row and
sixth column, all the other constituents being zero. Similarly in general.

This canonical representation of a matrix was virtually given by Buchheim
(in Proc. Lond. Math. Soc. Vol. XVI), but was first explicitly given by Weyr
(Comptes Rendus, Vol. C).

If g, is an a" latent root of p and if &, o4+ as, .. .. 1+ @yt agt ... Fa,=a,
are the nullities of the matrices (¢ —g.), (p —g.)-.- . (9 —g.)", Weyr terms
the numbers (a, a;, a5 . . . . a,) the characteristics of the latent root g,.

I shall term two matrices of the same order equivalent, if they have the same
latent roots with the same characteristics respectively.*®

In what follows, since all the latent roots are zero, I shall speak of the
characteristics of the matrix instead of the characteristics of the latent root zero.

Consider a matrix ¢ of order » and suppose

'Nv[‘p] =D lvv[q’g] =p+a,.... M[q’t] =pta+ta+t....q. =0,

where pS o, Sy ... - Sa,.

IfJ7=¢, then
N =p, B =p+a,.... N =0
Let
N,[{] = a, then
gaSp, andif a=1, g=p
TR a=2’ q;—]_;.

We may now establish the following results, the most of which are restrictive
on g, % being the index of the root.

1). It is quite obvious that if a,_, is the second last increment of nullity of
successive powers of ¢, then ¢ Za,_,.

* Weyr defines two matrices of the same order as being *‘ matrices de méme espéce »’ if they have the
same latent roots with the same characteristics ; and adds that, if M and N are two equivalent matrices,
one can always find a matrix @ of nullity zero such that N= @M@, which is a formula giving all
equivalent matrices in terms of one of them.
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2). (a). gia Zp—q+1 when g = an integer.

Let N,[Y]=a,
'Nv[‘l"’] =a + ay,

NMH]=a+a+.... +a_1=p.

Then o will have its least value when a, 4+ a3+ ... .4 a,_, is greatest, but this
sum will be greatest when a, =ay=....=a,_; =a;
a will be least when

a+(g—Na=p,
_p. . p
or a=—=% e A =.
g’ >q

Again, if a is to have its greatest value, a; + a3+ . ... +a,_, must have its least
value, but this sum is least when ¢y =ay=....=0a,_, =1;
a will be greatest when
atg—1=p;
a=p—gq+1; . alp—gqg+1;
g?a?p—q+L

(b). [g] +12ap—¢q+1 when %:{: an integer.

Where [-zq—’] denotes the greatest integer in g, a8 in previous case a

will be least when a; + a3+ . ...+ a,_, is greatest, that is when a; =a,=....
=a,_s=a and a,_, is as great as possible ;
« is least when
a(g—1)+ a1 =p.
P, torifq —[P — [P P
Now a must be greater than [E] ; forifa = [5] then a,_, = p q[q] + [q]
which is obviously greater than [é—)], that is, @, ., > a, which is impossible ; and

therefore a > [g]
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Let a = [B] +1;
q
cr=p—a[Z]—g+[Z] 41
But p+1 —g{[§]+1 izo;
@go1T [g] which is possible ;

o= [I—D] + 1 is the lower limit.
q

If « is to have its greatest value, a;+ a3+ ... . +a,_, must have its least
value;

atqg—1=p;

alp—gqg+1.

Therefore [g:l+ 1Z2alp—q+1.

3). If N,[4?] =p and g>1§’, then N,[4*+1] =p +1.

In this case «S 2 and hence it is obvious that the increments of nullity must
reduce to unity at or before the ¢** power of 4.
As an immediate consequence of this we have
N]=p+q N ]=p+2.... N[ ]=p+(x—1)y;

and . g=a=....=q_y=gq.

Therefore there is no ¢** root of ¢, ¢ being greater than 2—; , unless the nullity of

successive powers of ¢ increase by equal increments of ¢.

4). If a, is the first increment of nullity that is less than 2¢, then J*Ve+ae.+1
has a nullity p + 2(x —2) + 2a, + 1, that is, the increment of nullity for all
powers of ¥ greater than the {(x —1)g + a,}* is unity.

N[¢)=p+2Ax—1)g;
. N4 =p + 2(x— 1)g.
Let 26+ y=a,andz+y=gq;
S x=a,—gq,0ry=2q—a,.
N[t =p+2x—1)g + 22,
or N,[y1+ %~ =p+2(x —1)g+ 2a. —2¢;
N, [=—02+%] = p + 2(x — 2)g + 2a,.

b oy v mes s e
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But _Ny[m),(-+l)q] — M['Q/“""""”] =p + 2(,‘ —_ l)q + a,,
N[yt ectv] = p+ 2(x— 2) + 20, +y;
N [JeDatoct+] = p 4 9(x — 2) + 2a,+1;
and therefore the increment for all powers of 4 greater than the {(x— 1)g+a, ™
is unity.
5). If a, is the first of the a's that is less than 2¢, then there is no ¢** root
ofpunlessa, s =a, ,=....a_53=gq.
This follows as an immediate consequence of 4).

6). If a, is the first of the a’s that is less than 2¢ and if e, , =a, s=....
= a,.3 =g, then there always exists a ¢** root of ¢.
Let N[4] =«a, N,[V]=a+2... . N[ ]=a+20¢q—1)=p
Then
Yy=124-23+4....(x—1.g+a,—1)(x—1.g+a,)+*+(x—1.g+a,+1)(x—1.9+a,+ 2)
+.iiit+.i o+ (@—at+1)(0—a+2),
where * denotes where a term, which in the natural sequence would appear,
has been omitted.
7). If the nullity of successive powers of ¢ increase by equal increments of
ugq, (ug Z p), then there is always a ¢** root of ¢.
For take
a=p—u(g—1),
and give to successive powers of ¥ equal increments of u;
N =p.
And we have
=2 2+u+A+1.24u+14. .. +i+o—p+u(g—1)—1.A4+o0—p+u(g—1)+u—1’
where A may take any of the values
1,238, ....p—u(g—1) +1.
8). If g= P —1 and a> 2v + 3, then N[ =p—1; and therefore

there is no ¢* root of ¢ unless there are equal increments of ¢.
Of course ¢S 2; and .. pS 2(v + 2).
B[] = o, N#] =a+a, ete.;
atoata+....+a,_,=p.
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Suppose ¢y =ay=....=a, =2 anda,_, =1;
at+(g—22+1=p;
a=p—29+3=20+43;
and therefore when a S 2» 4 3 obviously N,[4*~']=p —1.

27. 1 propose now to show that there is always a ¢* root of ¢ unless the
law of nullity prohibits.

I shall suppose the law of nullity does not prohibit and then show that there
is a ¢*® root by finding it.

Suppose a=i+j+ .... +x+1
and -
B[] = b, B[P+ = ba 4+ ba—1) ... N[0t 0] = p,
where g=by+ b+ b+ ....+ b and

p=bun+ba—1)4+....+b(a —1);
N+l =p+bi(a—i—1).... . N[drtont-+dh]=p+taq,

where
bg+1+ b;+’+ e o e +b‘+,= q and

bipr1la—t—1+.... +by,(a—i—J) =a;

_Ny[;d,zﬂt"l'bi+l+l] =p+a + bipypi(a —t—j5—1), ete.,
ete.,

_Nl'[¢(t—l)q+b¢.—n+b¢—x+1 + "-'+b¢—-’] =p + a -I- as + s e e + A, _q + bn—" 2, etc-,
M’[¢(z—1>q+b,_,‘+b,_.+,+----+°¢—1] = Ny[\p‘ﬂ] =p+at+a+t+....+b_1=a,

where b, _, obviously equals a,_,.
We have then for 4 the following:

v=[124+23+....+b—1.b]um+*+ [0+ 1.00+2+....
' + 28+ b, —1.25 - b]m, + 2+ ...
+Bi+o—D+ ... b F1Lbi+ b —1)+ .. b+ 2+ ...
+oG+1) 4. Fh—1.50E+1) + ...+ b,

+ [bla—1)+b(a—2)+ ... . by +1.0(a—1)+ ... + b, +2+ ....
+boa+....+b,_1—l.b0a+ ) +b._1]n“_l,

where 35, denotes b, 4+ b, + b+ .... + b, and where b + by(a —1)+....
+ b, = o the last term being therefore (0 — 1)o.
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It will be observed that 4 is divided into a sets, each of which I have
enclosed in brackets with a subscript indicating the power which causes that set
to vanish,

28. I shall now give all possible types of roots of nilpofent matrices of
orders 3—10 inclusive.

(a).—Matrix of order 3.
N,[¢]=2, N,[¢'] =3;
¢=13=(12+ 23).
(b).—Matrix of order 4.
1). N[p]=2, Np]=4;
¢ =13 + 24 = (12 + 23 + 34)'.
2). N[¢] =3, N,[¢"] = 4;
¢=14=(12 + 23 + 34);
or = 24 = (23 + 34)%.
(c).—Matrix of order b.
1). N[e]=2, N[¢]=4, N[p]=5;
=13 + 24+ 35 = (12 + 23 + 34 + 45)'.
2). N[¢] =3, N,[¢*] =5;
=14+ 25 = (12+ 23 + 34 + 45)°,
or = 244 35=(23 + 34 4 45)%.
3). N,[p] =4, N,[¢] =5;
¢=156= (12 + 23 + 34 + 45)* = (13 + 24 + 35)*,
or = 25 = (23 + 34 + 45)°,
“ =36 = (34 + 45)' = (12 + 34 + 456)°.

Here, for the first time thus far, we have more than one type of root of the
same index ; and hereafter when this occurs I shall give the characteristics.
In this case we have, using ch. to denote * characteristics,”
k. o 3(5; 3,1, 1, 0)
(652 2 1,0).
(d).—Matrix of order 6.

1). Mol =2, N[¢) =4, N,[¢']=6.
Instead of indicating the nullity of successive powers of ¢ as heretofore, I
shall for convenience simply write the characteristics of ¢.
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In this case we have
ch. ¢ (65 2, 2, 2 0);
=13+ 244356+ 46 =(12+ 23+34+45+56)’.

2). ch. ¢ (65 3,3,0);

¢ =14 + 25 + 36 = (12 + 23 + 34 + 45 + 66)’,
no. sq. root vide Art. 26. 3).

3). ch. ¢ (6; 3,2 1,0);
¢ = 24+ 354 46 = (23 + 34 4 45 + 56)°.

4). ch. ¢ (65 4, 2,0);
¢=15+26=(12+23+34+45+56)‘=(13+24+35+46)’,
0r=25+36=(23+34+45+56)’,

« =85 + 46 = (34 + 45 4 56)* = (12 + 34 + 45 + 56)’,

(6;3,1,1,1,0)
ch. ¢! { (6; 2, 2 20)
(652 21,1,0).
6). ch. ¢ (6; 5,1, 0);
¢ =16 = (12 + 23 + 34 + 45 + 56)°,
or = 26 = (23 + 34 + 46 + 56)* = (24 + 35 + 46)°,
« = 36 = (34 + 45+ 56)° = (12 + 34 + 45 + 56)°,
« = 46 = (45 + 56)°.

ch. ¢t {(6; 4,1,1,0) ch. ¢ {(6; 31,1, 1,0)
(65 3,2 1,0), (6; 2,2 1,1,0).

(€).— Matrix of order 1.

1). ch. ¢ (7; 2,2 2, 1,0);

¢=13+ 24+ 36 + 46 + 57 =(12+ 23 + 34 + etc.).
2). ch. $(7;38,8,1,0); :

=14+ 26 + 36 +47=(12+ 23 + 34 + ete.)’,

no. sq. root.

3). ch. ¢ (7; 3, 2 2 0);

¢ = 24 + 35 + 46 4 57 = (23 + 34 + 45 + 56 + 67)’.
4). ch. ¢ (7; 4, 3, 0);

¢ =15 + 26 + 37 = (12 + 23 + 34 + etc.)' = (13 + 24 + ete.)',
or =26 + 36 + 47 = (23 + 34 + ete.)®.
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6). ch. p(7; 4, 2, 1,0);
¢ =35+ 46 + 57 = (34 + 45 + 56 + 67)",
= (12 + 34 + 45 + 56 + 67),
s ((7;8,1,1. 1, 1, 0)
k- ¢ {(7; 2,2 1,1,1,0).
6). ch. ¢ (7; 5, 2, 0);
@ =16 + 27 = (12 + 23 + ete.)?,
or = 26 + 37 = (23 + 34 + ete.)' = (24 + 35 + etc.)?,
“ =36 4 47 = (34 + 45 + etc.) = (12 + 34 + 46 + etc.)’,
“ =46 4 57==(45 + 56 + 67 = (12 + 45 + 56 + 67)".

(7; 4,1, 1,1, 0)
ch. ¢} é' (7; 3,2 2 0) ch. ¢t {Uf 31,1,1,1,0)
L(7;8 21,1, 0), (7; 2,2,1,1,1, 0).
7). ch. ¢ (7; 6, 1, 0);
¢=17=(12 4 23 + etc.)* = (13 + 24 + etc.)* = (14 + 25 + etc.)?,
or = 27 = (23 + 34 4 etc.),
“ =387=(34 + 45 + 56 + 67)' = (12 + 34 + 45 + etc.)*
.= (35 + 46 + etc)? = (12 + 35 + 46 + 57),
“ = 47= (45 4 56 + 67)* = (12 + 45 + 56 + 67)°
=(124+ 23+ 454 56 + 67)},
“ = 57 = (66 + 67).

(7; 5,1, 1, 0) (7; 41,1, 1, 0) 7:3 1.1 110
ch.¢* {(7;4,2,1,0) ch¢t {(7;3,21,1,0) chot {(7f 2’ 2’ 1’ 1’ 1’ o)
(7;3’3’ 1’0)’ . (7;2’ 2’2, 1'0)’ ( ’ y 4 My B A ).
(f). Matriz of order 8.
1). ch. ¢ (8; 2, 2 2, 2 0);
¢ =13 + 24 + etc. = (12 + 23 + etc.)%.
2). ch. ¢ (8; 8, 3, 2,0);
¢ =14 4 25 + etc. = (12 + 23 + etc.)®.
3). ch. ¢ (8; 3,22 1,0);
¢ =24+ 35 + 46 + 57 + 68 = (23 4 34 + etc.)'.
4). ch. ¢ (8; 4, 4, 0);
®=15+ 26 + 37 + 48 = (12 + 23 + etc.)* = (13 + 24 + etc.)?,

no. cu. root.
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5). ch. ¢ (8; 4, 3,1, 0);
¢ = 25 + 86 + 47 + 58 = (23 4 34 + 45 + etc.),
or =13 + 46 + 57 4+ 68 = (12 + 23 + 45 4 56 4 67 + 78).
6). ch. ¢ (8; 4, 2, 2, 0);
$=385+46+457+68=(34+45+566+ etc.))=(12+34+45+56+ etc.)’.

ch ¢ {(8, 3,1,1,1,1, 1, 0)

(8; 22 1,1,1,1,0).
7). ch. ¢ (8; 5,3, 0);
¢ =16 + 27 + 38 = (12 + 23 + etc.)s,
or = 26 + 37 4 48 = (23 + 34 4 etc.)* = (24 + 35 + etc.)?,
“ =36 + 47 + 58 = (34 + 45 + etc.)’ = (12 + 34 + 45 + etc.)’.
ch. ot {(8; 3,1,1,1,1,1,0)
(8; 2,2 1,1,1,1,0).
8). ch. ¢ (8; 5, 2,1, 0);
¢—46+57+68‘—(45+56+67+78)’—(l2+45+56+67+78)’.

ch. ¢§ {(8, 4,1,1,1,1,0)

(8;3,21,1,1,0).
9). ch. ¢ (8; 6, 2,0);
@=17 + 28 = (12 + 23 + 34 + etc.)* = (13 4 24 + 35 + etc.)®
= (14 + 25 + etc.)?,
or = 27 4 38 = (23 + 34 + etc.)’,
“ =374 48 = (34 + 45 + 56 + etc.)* = (12 + 34 + 45 + ete.)!
. = (35 + 46 + etc.)?,
“ =47 + 58 = (45 + 56 + etc.)* = (12 + 45 + 56 + etc.)®
= (12 4 23 + 45 + 56 + etc.)’,
“ =57+ 68 = (56 + 67 + 78)> = (12 + 56 + etc.)?
= (12 + 34 + 56 + etc. ).

rgzi;;;)()) (854,1,1,1,1,0)
ch. ¢t 4 (8;4,21,1,0) ch. ¢t (8;321,1,1,0)
(853,38 20) [(8;2,2,2,2,0)
(858,31, 1,0), (8;2221,1,0),
ch. ¢t {(8; 31,1,1,1,1,0)
(8;221,1,1,10).
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10). ch. ¢ (8; 17, 1, 0);
¢ =18 = (12 + 23 + ete.),
or = 28 = (23 + 34 + etc.)® = (24 4 35 + etc.)®* = (25 + 36 + etc.)?,
“ = 38 = (34 + 45 + etc.)S = (12 + 34 + 45 + etc.)’,
“ =48 =(45+ 56 + 67+ 78)* = (12 + 45 + etc.)*
= (12 4 23 4 45 + etc.)' = (46 + 57 + 68)?
= (12 + 46 + 57 + 68)*,
“ =58 = (56 + 67 + 78)* = (12 + 56 + 67 + 78)°
= (12 4 34 + 56 + 67 + 78)*,
“ = 68 = (67 + 78)’= (12 + 67 + 78)*= (12 + 34 + 67 + 78)".

(8; 5,1, 1,1, 0)
(8; 4,2 1,1,0)
(8; 83, 1,1,0)
(8;3,221,0),

((8; 6, 1,1, 0)
ch. ¢* { (8;5,21,0) ch. ¢t
[ (8; 4,3, 1,0),

(8; 41,1, 1,1, 0) .
73,1,1,1,1,1,0
[ (852 2 2 1,1,0), (8; 22 1,1,1,1,0).

(g)— Matriz of order 9.
1). ch. $(9; 2,22 2 1,0);
¢ = 13 4 24 4 etc. = (12 4 23 4 etc.)’.
2). ch. ¢ (9; 3, 3, 3, 0);
¢ = 14 4 25 + 36 4 ete. = (12 + 23 + etc.)’.
3). ch. ¢ (9; 3, 2, 2, 2, 0);
¢ = 24 4 35 + 46 4 etc. = (23 4 34 + etc.)?.
4). ch. ¢ (9; 4, 4, 1, 0);
@ = 16 4 26 + 37 4 48 4 59 = (12 4 23 + etc.)* = (13 + 24 + ete.)’.
5). ch.  (9; 4, 3, 2, 0);
¢ = 26 + 36 4 etc. = (23 + 34 + etc.),
or =13 4 46 4 67 + 68 + 79 = (12 + 23 + 45 + 56 + etc.)’.
6). ch. d (9; 4,2, 21, 0);
¢ = 35 4 46 4 etc. = (34 + 45 + etc.)? =(12 4 34 + 45 + etc.)’.

C’l. q)i‘ {(9’ 3’ l: 11 1! 11 ly 1, 0)

(9; 2,2, 1,1, 1,1, 1, 0).
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7). ch. ¢ (9; 5, 4, 0);
¢ =16 + 27 + 38 + 49 = (12 + 23 + etc.)’,
or = 26437448459 = (23434445 +4-etc.) = (24435446 + etc.)?.

8). ch. ¢ (9; 5, 3, 1, 0);
@ = 36 + 47 + 58 + 69 = (34 + 45 + etc.)® = (12 + 34 + etc.)?,
or = 13 4+ 57 + 68 4 79 = (12 + 23 4 57 + etc.)’.

ch. ot {(9; 3,1,1,1,1,1, 1, 0)
(9;221,1,1,1, 1, 0).

9). ch. ¢ (9; 5, 2, 2, 0);
@ = 46 + 57+ 68 + 79 = (45 456 + etc.)P = (12 4 45 + 56 + ete.)’.

Ch. ‘p'} {(9; 4) 1) 1’ 11 1) ly 0)
(9;8,21,1,1,1,0).

10). ch. ¢ (9; 6, 3, 0);
@=17+4 28 4+ 39 = (12 4 23 4 34 + etc.)* = (13 + 24 4 etc.)®
= (14 4 25 + 36 + etec.)?,
or = 27 4 38 4 49 = (23 + 34 4 etc.)’,
“ =37 4 48 + 59 = (34 4 45 4 etc.) = (12 - 34 4 45 - ete.)*
= (35 + 46 4 etc.)’ = (12 4 35 4 46 4 etc.)?,
“ =47 4 58 4 69 = (45 + 56 + etc.)) = (12 4 45 4 56 + etc.)?

= (12 + 23 + 45 + 56 + etc.)®.
(9; 4,22 1,0) ((9;41,1,1,1,1,0)
ch. ¢t { (9; 3,3,3,0) ch. ot { (9;3,2,1,1,1,1,0)
(9; 3,3, 2 1,0), (9;2221,1,1,0),

Ch (p* {(97 39 1; ], 11 1’ 19 11 0)
' (9;221,1,1,1, 1, 0).

11). ch. ¢ (9; 6, 2,1, 0);

¢ =57 + 68 4 79 = (56 + 67 + etc.)* = (12 + 56 + 67 + etc.)?
= (12 4 34 4 56 4 67 + etc.)’.

(9;5,1,1,1, 1, 0)
ch. ¢t {(9;4,21,1,1,0)

(9; 33, 1,1,1, 0).
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12). ch. ¢ (9; 7, 2, 0);
¢ =18 + 29 = (12 + 23 + etc.),
or = 28 + 39 = (23 + 34 + etc.) = (24 + 35 + etc.)’

[

i

[

o

]

= (25 + 36 + etc.)?,
= 38 + 49 = (34 + 45 + etc.)’ = (12 + 34 + 45 + etc.)},
=48 + 59 = (45 + 56 + etc." = (12 + 45 + 56 + etc.)*

= (12 4+ 23 + 45 + 56 + etc.)t,
=58 + 69 = (566 -+ 67 + etc.)’ = (12 + 56 + 67 + etc.)®

= (12 + 34 + 56 + etc.)* = (12 + 23 4 56 + etc.)?,
=67+ 79=(67+ 78 + 89) = (124 67 + 78 4 89)

= (12 4 34 + 67 + etc.)?,
=134 79=(12+ 23 + 78 + 89).

[(9;6,1,1,1,0) |’(9,5,1,1,1,1,o)
!(9,522 0) | (9;4,21,1,1,0)
ch. ¢t { (9;5,21,1,0) ch ¢*1(9;3,3,1,1,1,o)
1(9,4,3,20) | (953,2220)
| (9; 4,3, 1,1,0), L(9;3 221,1,0),
(9;4,1,1,1, 1, 1, 0)
ch. ¢t {(9 3,211,1,1,0) ch ¢t {(95 51,111,110
9:222 111 0), (9; 2,2,1,1,1, 1, 1, 0).

13). ch. ¢ (9; 8, 1, 0); _
¢ =19 = (12 4 23 4 etc.)® = (13 + 24 + etc.)* = (15 + 26 + etc.)?,
or =29 =(23 4 34 4 etc.)’,

13

-

¢

= 39 = (34 + 45 + 56 + etc.)* = (12 + 34 + etc.)®
= (35 + 46 + etc.)* = (12 4 35 + 46 + etc.)?
= (36 4 47 + etc.)' = (12 + 36 + 47 + etc.)’?,

= 49 = (45 + 56 + etc.)’ = (12 + 45 + 56 + etc.)’
= (12 4 23 + 45 + ete.)’,

= 59 = (56 + 67 + ete.)* = (12 + 56 4 67 + etc.)*

=(12 + 23 4 56 + 67 + etc.) = (12+ 34 + 56 + 67 4 etc.)*

= (124 23 4 34 + 56 4 67 4 etc.)! = (57 + 68 + etc.)}
= (124 57 4 68 4 79)* = (12 4 34 + 57 4 etc.)’,
=69 = (67 + 78 489 =(12+4 67 4+ 78 4 89)°
= (124 34 4 67 +etc.)’ = (12 4 23 + 67 + 78 4 89)°
= (12 + 23 4 45 + etc.)?,
=179=(78 + 89)'=(12 4 78 + 89)°.
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- 9;6,1,1,1,0
(957, 1,1, 0) lrgsfs 21, 1’0;
i} (9;6,21,0) i D e
ch. ¢ 1(9_5310) ch. ¢ (9;4,3,1,1,0)
(9’ 4’ 4’ 1’ O) I (9; 41 2: 21 1, 0)
- P S T l(9;3,3,2,1,0),
r .
(37 i; ;y i: ir i! g; (9;4, 1,1,1,1, 1, 0)
ch. ‘P* 1 (933’ 3’ 1’ ]’ 1’0 ch. ¢§ (9;3,21,1,1,1,0)
(958,3,1,1,1, 0) (952,22 1,1, 1, 0,
_(9; 21 2) 21 27 1, O)y

ch ¢* (9; 3,,1,1,1,1,1, 0)
' {(9; 2,211,1,1,1,0).

(h).—Matrix of order 10.

1). ch. (P (10; 2, 2, 21 2: 2, 0);
¢ =13 + 24 + 35 + etc. = (12 + 23 + ete.).
2). ch. ¢ (10; 3, 8, 8, 1, 0);
¢ =14 + 26 + etc. = (12 + 23 + ete.)®.
3). ch. ¢ (10; 3,2, 2, 2,1, 0);
¢ = 24 435 + etc. = (23 + 34 + ete.)?.
4). ch. ¢ (10; 4, 4, 2, 0);
¢ =156+ 26 + etc. = (12 + 23 + etc.)* = (13 + 24 + etc.)’.
5). ch. ¢ (10; 4, 3, 3, 0);
¢ = 25 4 36 + etc. = (23 + 34 4 etc.)’.
6). ch, (] (10; 4,3, 21, O))
¢ =13 + 46 + 57 4 etc. = (12 + 23 4 etc.)’.
7). ch. ¢ (10; 4, 2, 2, 2, 0);
¢ = 35 + 46 + 57 + etc.) = (34 + 45 4 etc.)?
= (12 4 34 4 45 + etc.).
ch. ¢} {(10; 3,1,1,1,1,1,1, 1, 0)
(105 2,2,1,1,1, 1, 1, 1, 0).
8). ch. ¢ (10; 5, 5, 0);
¢ =16 4 27 4 ete. = (12 4 23 4 etc.)’.

9). ch. P (101 5, 4, 1, 0)7

¢ = 26 + 37 + etc. = (23 4 34 + etc.)' = (24 + 35 + etc.)".

43
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10). ch. ¢ (10; 5, 3, 2, 0);
¢ =36+ 47 + etc. = (344 46 + etc.)’= (124 34+ 45 + etC.)s,
or =13 4 57 4 etc. = (12 + 23 + 56 + 67 4 etc.)’.
ch. ¢§ {(10; 3: ls 11 l; 1; 19 11 1, 0)
(10; 2,2, 1,1, 1, 1, 1, 1, 0).

11). ch. ¢ (10; 5, 2, 2, 1, 0);
@ = 46 + 57 + 68 + etc. = (45 + 56 + ete.)® = (124454 56+ etc.).

oh. ¢t {(10; 4,1,1,1,1, 1,1, 0)
(10; 8,2,1,1, 1,1, 1, 0).

12). ch. ¢ (10; 6, 4, 0);
=17 + 28 + ete.= (12 + 23 + ete.)® = (13 + 24 + etc.)®
= (14 + 25 + ete.)?,
or = 27 + 38 + etc. = (23 + 34 + etc.)’,
“ =37 4 48 + etc. = (34 + 45 + etc.)* = (12 + 34 + 45 + ete.)*
= (35 + 46 + etc.)) = (12 + 356 + 46 4 etc.)?,
“ =14+ 568+ 69+ 710=(12+ 23 + 34 4 56 4 67 + etc.)®.

(10; 4, 2, 2, 2, 0) .

CI). ¢§ (10; 3’ 3, 3’ 1, 0) ch. ¢§ 3(10, 2, 2, 21 2, 2, 0)

(10: 3.3, 2. 2, 0) (105 2, 2,2 2,1, 1, 0).
? ’ ? ’ 1 ’

(105 8,1,1,1,1, 1,1, 1, 0)

ch. ¢t
? 3(10; 22, 1,1,1,1, 1, 1, O).

13). ch. ¢ (10; 6, 3, 1, 0);
¢ = 47 + 58 + etc. = (456 + 56 + etc.) = (12 + 45 + etc.)®
= (12 + 23 + 45 + etc.)?,
or=134 68 + 79+ 810=(12 + 23 + 67 + 78 + etc.)?
=(12+ 23 + 454+ 67 4 78 + ete.)b.

((10; 4,1,1,1,1,1,1,0)

10; 4,2, 2,1,1,0
ch. ¢t 3( ! 1 ) ch. ¢* { (105 3,2,1,1,1, 1, 1, 0)
(10; 3,3, 2 1, 1, 0), (107222 1.1,1,1,0).

14). ch. ¢ (10; 6, 2, 2, 0);
=57+ 68+ 79 +810=(56 + 67 + etc.)’ = (12 + 56 + etc.)?
= (12 + 34 + 56 + ete.)’.
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(10; 5,1, 1, 1,1, 1, 0)
ch. ¢ { (10; 4,2,1,1,1, 1, 0)
(105 3,3,1,1,1, 1, 0).
16). ch. ¢ (10; 7, 3, 0);
¢ =18 + 29 + 310 = (12 + 23 + etc.)’,
or = 28 + 39 + 410 = (23 + 34 + etc.)* = (24 + 35 + etc.)*
= (25 + 36 + etc.)?,
“ = 38 4 49 + 510 = (34 + 45 + etc.)’ = (12 + 34 + 45 + etc.)",
“ = 48 4 59 4 610 = (45 + 56 + etc.)* = (12 + 45 + 56 + etc.)!
= (12 + 23 + 45 + etc.)*= (46 + 567 + etc.)?
= (12 + 46 + 57 + etc.)?,
“ = 58 4 69 4+ 710 = (56 + 67 + etc.)* = (12+ 56 + 67 + etc.)®
= (12 + 23 + 56 + etc.)® = (12434 + 564-etc.)’.

(10; 5,1, 1,1, 1, 1, 0)

(1055, 2 2 1,0) (10; 4,2, 1,1, 1, 1, 0)

ch. ¢t { (10; 4, 8, 8, 0) ch. ¢* { (10; 3,3,1,1, 1, 1, 0)
(105 4, 3, 2, 1, 0), (10; 3, 2, 2, 2, 1, 0)

(10; 3, 2,21, 1, 1, 0).

10; 1,1,1,1,1, 1,0
A 1 (103 ;1 0 1’ 1 19 . 0; o ¢§ (10; 3,1,1,1,1,1,1, 1, 0)
ch. ¢ ( )y 9 4 1, 4, 4, 4, 4, (10;2,2,1,1,1,1,1,1,0),
(10; 22 21,1,1,1, 0),

) ’ ’ ?

16). ck. ¢ (10; 7, 2, 1, 0);
¢ =68 + 79 + 810 = (67 + 78 + etc.)! = (12 + 67 + 78 + etc.)?
= (12 4 34 + 67 + 78 +etc.)’.
((10;86,.1,1,1,1,0)
ch. ¢t {(10;5,21,1,1,0)
L (10; 4, 3,1, 1, 1, 0).

17). ch. ¢ (10; 8, 2, 0);
¢ =19 + 210 = (12 + 23 + ete.)*= (13 4 24 4 etc.)*
= (16 + 26 + etc.)?,
or = 29 4 310 = (23 + 34 + etc.),
“ =39 4 410 = (34 + 45 + etc.)* = (12 + 34 + 45 + etc.)’
= (35 4 46 + etc.)* = (12 + 35 + etc.)’
= (36 + 47 + etc.)* = (12 + 36 + 47 | ete.),
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or = 49 + 510 = (45 + 56 + 67 + etc.)’ = (12 + 46 + 56 + etc.)’
= (12 + 23 + 45 + etc.)’,
“ =594 610=(56 4+ 67 4etc.)* = (124 56 4 67 4 etc.)*
= (12 4 23 + 56 + ete.)* = (12 + 34 + 56 4 etc.)*
= (12 + 23 + 34 + 56 fetc.)* = (57 + 68 + etc.)?
= (12 4 57 + 68 4 etc.)? = (12 + 34 + 57 + etc.)?,
“ =69 4 710 = (67 4 78 + etc.)’ = (12 4 67 4 78 + etc.)?
= (12 4 23 + 67 + 78 + etc.)?
= (12 + 23 4 45 + 67 + 78 + etc.)®
= (12 + 34 4 67 4 78 4 etc.)?,
“ =179 4 810= (78 489 + 910)* = (12 4 78 + 89 + 910)*

= (12 + 34 + 78 + etc.) = (124344564784 etc.)’.

((10; 7,1, 1, 1, 0) (10; 8,1, 1, 1, 1, 0)
(105 6, 2, 1, 1, 0) (10; 5, 2, 1, 1, 1, 0)
(10; 6, 2, 2, 0) (10; 4, 3, 1, 1, 1, 0)
ch. ¢t { (10; 5, 3, 2, 0) ch. * < (10; 4,2, 2, 2, 0)
(10; 5, 3, 1, 1, 0) (10; 4,2, 2, 1, 1, 0)
(10; 4, 4, 2, 0) (10; 3, 3, 2, 2, 0)
L (10; 4, 4,1, 1, 0), ( (103 3,3, 2,1, 1, 0),
((10; 6,1, 1,1, 1, 1, 0) (10; 4,1, 1, 1, 1, 1, 1, 0)
(10; 4, 2,1, 1, 1, 1, 0) ch. ¢t {(10, 3,21,1,1,1,1,0)
b ot | (105 3,3,1,1, 1, 1, 0) (10; 2,2, 2,1, 1, 1, 1, 0),
(105 3,2, 2,1, 1, 1, 0)
(10; 2, 2, 2, 2, 2, 0) ch, b {(10; 3,1,1,1,1,1, 1, 1, 0)
[ (10; 2,2, 2,2 1, 1, 0), (10; 2,2,1,1, 1, 1, 1, 1, 0)

18). ch. ¢ (105 9, 1, 0);
¢ = 110 = (12 + 23 + etc.)’ = (14 + 26 + etc.)?,
or = 210 = (23 + 34 + etc.)’ = (24 + 35 + ete.)!
= (26 + 37 4 etc.)’,
= 310 = (34 + 45 + etc.)’ = (12 + 34 + 45 + etc.)’,
“ = 410 = (46 + 56 + etc.)® = (12 + 45 + etc.)®
= (12 4 23 + 45 4 56 + etc.) = (46 + 57 + etc.)®
= (12 + 46 + 57 + etc.)® = (12 + 23 + 46 + etc.)®
= (47 + 58 + etc.)! = (12 + 47 + etc.)* = ete,,

6“
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or = 510 = (56 + 67 4 etc.)’ = (12 4 56 + etc.)’
= (12 + 23 + 56 + etc.)’ = (12 + 34 + 56 + etc.)’
= (12 + 23 + 34 + 56 + etc.)s,
“ = 610 = (67 + 78 + etc.)* = (12 + 67 + 78 + etc.)*
= (124 34 + 67 +etc.)* = (12 + 23 + 67 + 78 + etc.)}
= (12 + 23 + 34 + 67 + 78 + etc.)!
= (12 + 23 + 45 + 67 + etc.)t = (68 + 79 + 810)}
= (12 + 68 + 79 + etc.)* = (12 + 34 + 68 + etc.)?,
“ =710 = (78 + 89 + 910)* = (12 + 78 + ete.)’
= (12 + 23 + 78 + etc.)’ = (12 + 34 + 56 + 78 + etc.)’
= (12 + 23 + 45 + 78 etc.)?
= (12 + 23 + 45 + 56 + 78 + etc.)®
= (12 4 34 + 56 + 78 + etc.)’,
“ =810 = (89 + 910)’ = (12 + 89 + 910)°
= (12 + 34 + 89 + 910)® = (12 + 34 + 56 + 89 + 910)*

((10; 7,1,1, 1, 0) 1
_ (10; 6, 2, 1, 1, 0) !
83{ i’ 12 11 (()))) (10; 5, 3,1, 1, 0) ’
ch. ¢t 1 ch. ¢* 4 (10; 5, 2, 2, 1, 0) l
(10; 6, 3, 1, 0) a
10, 5, 4 1, 0) (10; 4, 4, 1, 1, 0) |
(105 5, 4, 1, 0), (10; 4, 38, 2, 1, 0)
| (105 3, 3,3, 1,0),
((10; 6,1, 1, 1, 1, 0)
(10; 5, 2,1, 1, 1, 0) ((10; 5,1, 1,1,1, 1, 0)
ch. ¢t (10; 4, 3,1, 1, 1, 0) ch. ot | (105 4,2,1,1, 1,1, 0)
] (105 4, 2 2 1,1, 0) (10; 3,3,1, 1, 1, 1, 0)
(105 8,3, 2,1, 1, 0) [ (105 2,2, 2 2 1,1,0),
L (103 3, 2, 2, 2, 1, 0),

(10; 4,1,1,1, 1, 1, 1, 0) 511111110
C}I. ¢* { (10; 3, 2, 1, 1, 1, l, ], 0) ch. ¢§ { (1(0)7 '21 21 ]1 17 1) l’ ly ll 0)
(10; 2,2,2,1,1,1, 1, 0), (105 2,21, 1,1, 1,1, 1, 0).
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29. Proceeding now to the consideration of matrices having some latent
roots zero and others different from zero it may be observed that:

(1). The nullity of N depends on the nullity of ¢ and in the following way:
N[N = N,[¢'] +0—p.-
And consequently when the nullity of ¢ is equal to its vacuity the nullity of N is
o, and therefore N vanishes.
(2). When the nullity of ¢ is equal to its vacuity it has an n* root, and

when the nullity is less than the vacuity ¢ obviously cannot have a root with
index greater than its nullity.

(3). If N[¢]=p, ¢ cannot have a (p—u)*® root unless N has a (p —u)™
root. :

30. N is a nilpotent matrix —a root of zero — such as was considered in
Art. 28, and as was there shown will have a ¢'® root unless the law of nullity
prohibits. The relation existing between the nullities of N and ¢ shows us
that if the law of nullity permits one it will also permit the other to have a ¢**
root, and consequently we have the theorem that: There will always be a ¢** root
unless the law of nullity prohibits.

§6.—TRANSCENDENTAL FUNCTIONS OF A MATRIX.

31. In this section I shall consider a few cases of the elementary transcen-
dental functions of a matrix.
(a). Exponential function.—I define e¢® by the ordinary series, viz.:

¢

¢2 3 ¢n
et=1 -l-—1 +? +?! +etc.+m+etc.

refial

Let 9" = (4o + nd; + n*4, + .... + 074, )91 + (By+ nB, + ... . +n"B,)g}
+oiii+ S+ 08+ 28+ ...+ 278,90,
then

e‘:i {(Ao-;-yAl-!—....+y”'A,,‘)g’{+.... + (S 4+ uS +....+u 'S,,.)g‘:}
w!
0
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